Оглавление

1	Задания на непрерывные дроби 1.1 Построение конечной цепной дроби 4 шага										
2	Задания на теорию сравнений										
	2.1	Определение сравнения 002	5								
	2.2	Определение сравнения 003	6								
	2.3	Определение сравнения 006	7								
	2.4	Определение сравнения 007	8								

1 Задания на непрерывные дроби

1.1 Построение конечной цепной дроби 4 шага

$$\frac{\text{FractA}[0]}{\text{FractA}[1]} = \text{Aa}[2] + \frac{1}{\text{Aa}[1] + \frac{1}{\text{Aa}[0] + \frac{1}{\text{Ab}[1]}}}$$

$$\frac{Aa[1] + \frac{1}{\text{Aa}[0] + \frac{1}{\text{Ab}[1]}}}{\frac{Ac[0]}{Aa[1]} + \frac{Ac[2]}{Aa[2]}}$$

$$\frac{Ad[1] + \frac{Ac[2]}{Aa[0]} + \frac{Ac[2]}{Aa[1]}}{\frac{Ac[0]}{Aa[0]}}$$

$$\frac{Ad[0] + \frac{Ac[1]}{Aa[0]} + \frac{Ac[1]}{Aa[0]}$$

$$\frac{Ad[0] + \frac{Ac[1]}{Aa[0]}}{Aa[0]}$$

Задаем: Ab[1], Aa[0], Aa[1], $Aa[2] \in \{1, 2, ..., 10\}$, Ab[0] = 1,

 ${\bf Koppektupyem:}\ {\tt д.б.}\ {\tt pas}$ личны все ${\tt Ab[1]}, {\tt Aa[0]}, {\tt Aa[1]}, {\tt Aa[2]}.$

Вычисляем:

$$\begin{array}{lll} {\tt Ac[0] = Ab[1] \cdot Aa[0],} & {\tt Ad[0] = Ac[0] + Ab[0],} & {\tt Ab[2] = Ad[0],} \\ {\tt Ac[1] = Ab[2] \cdot Aa[1],} & {\tt Ad[1] = Ac[1] + Ab[1],} & {\tt FractA[1] = Ad[1],} \\ {\tt Ac[2] = FractA[1] \cdot Aa[2],} & {\tt FractA[0] = Ac[2] + Ab[2].} \\ \end{array}$$

2 Задания на теорию сравнений

2.1 Определение сравнения 002

public string GroupName get; set; = "Number Theory"; public string Name = "Теория сравнений 002"; public string Description get; = "Теория сравнений";

Текст задания.

B поле для ввода вставьте наибольшее натуральное число, для которого выполняется система сравнений $\mathtt{Na} \equiv \mathtt{Nb} \equiv \mathtt{Nc} \pmod{\overline{\mathtt{Nm}}}.$

Задаем. $\mathtt{Nm} \in \{\overline{3,4},5,6,7,8\}$, $\mathtt{Na} \in \{1,2,3,4,5,6,7,8\} \setminus \mathtt{Nm}\}$, $\mathtt{Np} \in \{2,3,5,7\} \setminus \mathtt{Nm}\}$, $\mathtt{Nq} \in \{2,3,5,7\} \setminus \mathtt{Nm}\}$. Вычисляем. $\mathtt{Nb} = \mathtt{Na} + \mathtt{Np} \cdot \mathtt{Nm}$, $\mathtt{Nc} = \mathtt{Na} + \mathtt{Nq} \cdot \mathtt{Nm}$.

Например, при ${\tt Nm}=6$, ${\tt Na}=4$, ${\tt Np}=3$, ${\tt Nq}=2$, получаем текст условия:

B поле для ввода вставьте наибольшее натуральное число, для которого выполняется система сравнений $4 \equiv 22 \equiv 16 \pmod{6}$.

(Здесь в «рамочке», символизирующей поле для ввода, указано искомое значение).

2.2 Определение сравнения 003

public string GroupName get; set; = "Number Theory"; public string Name = "Теория сравнений 003"; public string Description get; = "Теория сравнений";

Текст задания.

 $\begin{tabular}{ll} {\bf Задаем.} & {\tt Nm} \in \{4,\overline{5,6,7},8,9\} \,, & {\tt Vab} = {\tt Vbb} \in \{1,2,\dots,{\tt Nm}-1\} \,, & {\tt Vcb} \in \{1,2,\dots,{\tt Nm}-1\} \, \backslash \{{\tt Vab}\}, \\ {\tt Uab} = {\tt Ucb} \in \{1,2,3,4,5\} \, \backslash \{{\tt Vab},{\tt Vcb}\}, & {\tt Ubb} \in \{1,2,3,4,5\} \, \backslash \{{\tt Vab},{\tt Vbb},{\tt Uab}\}, & {\tt Ww} \in \{1,2,3,4,5,6\} \,. \\ \end{tabular}$

 $\textbf{Вычисляем.} \; \texttt{Nab} = \texttt{Uab} \cdot \texttt{Nm} + \texttt{Vab}, \quad \texttt{Nbb} = \texttt{Ubb} \cdot \texttt{Nm} + \texttt{Vbb}, \quad \texttt{Ncb} = \texttt{Ucb} \cdot \texttt{Nm} + \texttt{Vcb}, \quad \texttt{Nx} = \texttt{Nab}, \quad \texttt{Ny} = \texttt{Nbb},$

WW	Naa	Nba	Nca	Uaa	Uba	Uca	Vaa	Vba	Vca
1	Nab	Nbb	Ncb	Uab	Ubb	Ucb	Vab	Vbb	Vcb
2	Ncb	Nab	Nbb	Ucb	Uab	Ubb	Vcb	Vab	Vbb
3	Nbb	Ncb	Nab	Ubb	Ucb	Uab	Vbb	Vcb	Vab
4	Nbb	Nab	Ncb	Ubb	Uab	Ucb	Vbb	Vab	Vcb
5	Ncb	Nbb	Nab	Ucb	Ubb	Uab	Vcb	Vbb	Vab
6	Nab	Ncb	Nbb	Uab	Ucb	Ubb	Vab	Vcb	Vbb
TT			3.7	0	77 7	7.77 7	0	77 7	0

 $\overline{\text{Например, при Nm}=6}$, $\overline{\text{Vab}=\text{Vbb}=2}$, $\overline{\text{Vcb}=3}$, $\overline{\text{Uab}=\text{Ucb}=4}$, $\overline{\text{Ubb}=1}$, $\overline{\text{Ww}}=4$, получаем текст:

$$\begin{cases} 8 = \boxed{1 \cdot 6 + \boxed{2}}, \\ 26 = \boxed{4 \cdot 6 + \boxed{2}}, \\ 27 = \boxed{4 \cdot 6 + \boxed{3}}, \end{cases}$$
 $3 \text{ Harum}, \ 26 \equiv \boxed{8} \pmod{6}.$

(Здесь в «рамочке», символизирующей поле для ввода, указано искомое значение).

2.3 Определение сравнения 006

public string GroupName get; set; = "Number Theory"; public string Name = "Теория сравнений на числовой оси 006"; public string Description get; = "Теория сравнений";

Текст задания.

 $\mathit{Отмеченные}$ числа удовлетворяют сравнению $x \equiv \underbrace{\mathbb{Nc}}_{\in [\mathtt{Na}, \, \mathtt{Nb}]} \pmod{\mathtt{Nm}}.$ (в рамочке — поля для ввода)

$$\textbf{Задаем.} \quad \texttt{Nm} \in \left\{3,4,5,6\right\}, \quad \texttt{Nr} \in \left\{1,2,\dots,\texttt{Nm}-1\right\}, \quad \texttt{Nt} \in \left\{-2,-1,0,1,2\right\}, \quad \texttt{Np} \in \left[-\frac{\texttt{Nm}-1}{2},\dots,-2,-1\right] \cap \mathbb{Z}, \\ \texttt{Nq} \in \left[1,2,\dots,\frac{\texttt{Nm}-1}{2}\right] \cap \mathbb{Z}.$$

 \mathbf{B} ычисляем. $\mathtt{Na} = \mathtt{Np} + \mathtt{Nt} \cdot \mathtt{Nm}$, $\mathtt{Nb} = \mathtt{Nq} + \mathtt{Nt} \cdot \mathtt{Nm}$, $\mathtt{Nc} = \mathtt{Nr} + \mathtt{Nt} \cdot \mathtt{Nm}$,

Изображен случай Nm = 3, Nr = 1, Nt = -2, Np = -1, Nq = 1,

$$Na = -1 + (-2) \cdot 3 = -7$$
, $Nb = 1 + (-2) \cdot 3 = -5$, $Nc = 1 + (-2) \cdot 3 = -5$.

Поэтому текст задания в этом случае:

Отмеченные числа удовлетворяют сравнению
$$x \equiv \underbrace{-5}_{\in [-7,-5]} \pmod{3}$$
.

(Здесь в «рамочке», символизирующей поле для ввода, указаны искомые значения).

2.4 Определение сравнения 007

public string GroupName get; set; = "Number Theory"; public string Name = "Теория сравнений на числовой оси 007"; public string Description get; = "Теория сравнений";

Текст задания.

This we territore the saw goods entropy from ephoneman Max =

∈[Naa. Nba]

Задаем. Nka $\in \{2,3\}$, Nkb $\in \{0,1,\ldots,$ Nka $-1\}$, Nmb $\in \{3,4,5,6\}$,

$$\mathtt{Nr} \in \left\{1, 2, \dots, \mathtt{Nm} - 1\right\}, \quad \mathtt{Nt} \in \left\{-2, -1, 0, 1, 2\right\}, \quad \mathtt{Np} \in \left[-\frac{\mathtt{Nm} - 1}{2}, \dots, -2, -1\right] \cap \mathbb{Z}, \quad \mathtt{Nq} \in \left[1, 2, \dots, \frac{\mathtt{Nm} - 1}{2}\right] \cap \mathbb{Z}.$$

Вычисляем. Nab = Np + Nt · Nmb, Nbb = Nq + Nt · Nmb, Ncb = Nr + Nt · Nm, Nca = Nka · Ncb. Nma = Nka · Nmb. Naa = Nka · Nab - Nkb. Nba = Nka · Nbb + Nkb.

Mзображен случай Nka =2. Nkb =1. Nmb =3. Nr =1. Nt =-2. Np =-1. Ng =1.

Nab =
$$-1 + (-2) \cdot 3 = -7$$
, Nbb = $1 + (-2) \cdot 3 = -5$, Ncb = $1 + (-2) \cdot 3 = -5$,

$$\mathtt{Nmb} = 2 \cdot 3 = 6, \quad \mathtt{Naa} = -1 + (-2) \cdot 3 - 1 = -15, \quad \mathtt{Nba} = 1 + (-2) \cdot 3 + 1 = -9, \quad \mathtt{Nca} = 2 \cdot (-5) = -10.$$

Поэтому текст задания в этом случае:

Отмеченные числа удовлетворяют сравнению
$$2x \equiv \underbrace{-10}_{\in [-15,-9]} \pmod{6}$$
.

(Здесь в «рамочке», символизирующей поле для ввода, указаны искомые значения).